马竞直播

您好,欢迎来到马竞直播!

Science | 张令强/杨冬/王立志等团队合作报道河南高生熊虫超强辐射耐受性的多组学景观和分子基础

微信图片_20241028135636.jpg

河南高生熊虫(Hypsibiushenanensis)

在绚丽多彩的自然界中,有一些极端生物进化出了适应极端环境的能力,水熊虫便是其中的代表[1]。水熊虫,是缓步动物的俗称,为微小的无脊椎动物,大部分体长不超过1毫米,通体透明,有4对短而粗的足,末端有爪子、吸盘或脚趾。水熊虫分布于世界各地,亦可在真空中生存[2]。它们栖息于淡水沉渣、潮湿土壤以及苔藓植物的水膜中,少数种类生活在海水的潮间带。目前已报道的水熊虫近1500余种,它们可耐受超强辐射、高温、高压、低温、干燥等多种极端环境[3],这些耐受特性具有很高的科学研究价值和生物医学应用价值。研究其极端环境耐受机制有助于深入理解生物体在极端环境中存活的适应性进化机制,拓展我们对生命本质和极限的认识。理解这些生物的内在保护机制对于发展基于仿生策略的极端环境防护靶点与干预措施至关重要,也是人类拓展自身生存空间必须回答的重要生物医学问题。

在诸多极端环境因素中,空间辐射损伤是制约人类深空探测和长期在轨驻留的关键医学问题之一,同时多种涉核作业环境均受到超强辐射的严重威胁。现有辐射防护策略对超强辐射缺乏有效防护,亟需在概念创新、理论提升和防护技术革新等方面做出颠覆性突破。水熊虫辐射耐受剂量是人类辐射致死剂量的上千倍[4],是极好的辐射耐受研究对象,被科学界视为超强辐射机制研究新的突破口。但目前国际上对水熊虫辐射耐受机制的认识很不清楚。

2024年10月25日,国家蛋白质科学中心(北京)张令强团队和杨冬团队,联合陕西学前师范学院王立志等国内相关研究团队在《Science》发表题为Multi-omicslandscape and molecular basis of radiation tolerance in atardigrade的研究论文,报道了一种高生属新种——河南高生熊虫,并建立了其实验室培养体系,绘制了高质量基因组图谱,在国际上首次整合转录组、蛋白质组响应超强辐射的动态变化及分子进化和功能特征分析,揭示了河南高生熊虫耐受超强辐射的三类机制,并分别对代表性关键分子进行了深入的功能和机制研究

微信图片_20241028135901.png

2018年,该研究团队从河南省伏牛山采集水熊虫样品,随后率先在国内建立了水熊虫实验室培养体系,实现了规模化培养,后经形态学和分子水平鉴定,确定所培养水熊虫是一种新的高生属水熊虫物种,命名为河南高生熊虫(Hypsibiushenanensis);研究团队对河南高生熊虫在多种极端环境(如超强辐射、低湿等)下的耐受特性进行了表征,发现其可耐受高达5000Gy 的γ射线辐射(人的辐射致死剂量约为5 Gy);随后该团队产出了国际上第一套有完善注释的染色体水平高质量水熊虫基因组图谱(112.6M,注释得到14701个编码蛋白的基因,均匀分布于6条染色体);为探索河南高生熊虫超强辐射耐受机制,他们利用200Gy和2000Gy的12C6+重离子照射水熊虫并进行转录组和蛋白质组检测,分析得到2801个差异基因;进一步结合分子进化和功能特征分析,将河南高生熊虫的辐射耐受机制归为三大类:一是从细菌、真菌、植物中通过水平基因转移(HGT)到水熊虫中的外来基因,赋予其特殊的抗逆能力,本研究共鉴定到75个高可信的HGT基因,其中13个在辐照后发生显著上调;二是水熊虫基因组中约30%的基因是缓步动物特异的,缓步动物特异蛋白倾向于高度无序,通过相分离参与DNA损伤修复等过程;三是与其它门类共有的古老蛋白(如线粒体呼吸链组装蛋白)在水熊虫中具有特殊的辐照响应模式。

在第一类机制中,该研究团队发现了一种DOPA(多巴)双加氧酶基因DODA1,它是细菌向缓步动物水平基因转移的产物。DODA1在2000Gy辐照条件下发生17.3倍的表达水平上调,DODA1可催化合成甜菜色素(一种此前被认为存在于植物、少数真菌和细菌中的色素[5]),甜菜色素具有很强的抗氧化活性,因此能够减轻辐射产生的大量ROS对细胞的损伤,从而赋予水熊虫辐射抗性。在第二类机制中发现缓步动物特异的辐射诱导的无序蛋白TRID1依赖其Prion-like结构域介导液-液相分离,从而促进DNA损伤修复。在第三类机制中发现了线粒体呼吸链复合物组装蛋白BCS1基因在包括河南高生熊虫在内的多种水熊虫基因组中发生了普遍扩张,并且线粒体呼吸链复合物组装蛋白BCS1和NDUFB8在辐照后表达明显上调,从而促进线粒体NAD+再生,进而加快NAD+依赖的损伤修复蛋白PARP1介导的DNA损伤修复。令人兴奋的是,上述在水熊虫中发挥抗辐射作用的分子,转入人源细胞中后,可以显著提升人源细胞的抗辐射能力,这提示它们具有重要潜在应用前景。

微信图片_20241028140151.png

南高生熊虫超强辐射耐受机制的多组学研究思路及核心结论示意图

今天,人类仍然面临着超强辐射的严重威胁。目前的辐射防护药物仅可对低剂量辐射有一定效果。因此,如何另辟蹊径来研发新的辐射防护策略,是摆在科研人员面前的一项重要而艰巨的任务。该研究工作基于对水熊虫的抗辐射机制解析,发现了几类代谢途径的‘协同动员机制’,这为人类辐射防护的研究提供了重要理论依据和候选分子。

本论文由国家蛋白质科学中心(北京)张令强研究员、杨冬副研究员,陕西学前师范学院王立志教授等所率团队联合完成;第一作者为国家蛋白质科学中心(北京)李磊和付业胜博士,研究生葛正平、刘世豪、郑坤、李亚琪及北京大学陈恺骐博士。

参考文献

1. R. O. Schill, Ed., Water Bears: The Biology of Tardigrades (Springer, 2018). doi:10.1007/978-3-319-95702-9.

2. E. Weronika, K. Lukasz, Tardigrades in Space Research - Past and Future. Orig Life Evol Biosph,  (2016). doi:10.1007/s11084-016-9522-1.

3. K. Arakawa, Examples of Extreme Survival: Tardigrade Genomics and Molecular Anhydrobiology. Annu Rev Anim Biosci 10, 17-37 (2022). doi:10.1146/annurev-animal-021419-083711.

4. T. Hashimoto, T. Kunieda, DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades. Life (Basel) 7,  (2017). doi:10.3390/life7020026.

5. J. P. Carreon-Hidalgo, D. C. Franco-Vasquez, D. R. Gomez-Linton, L. J. Perez-Flores, Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 151, 110821 (2022). doi:10.1016/j.foodres.2021.110821

联系我们
  • 电话:010-53395839
  • 邮箱:service@qinglianbio.com
  • 地址:北京市海淀永捷南路2号院1号楼
    中关村科学城·乡创中心
留言
您好,现在客服不在线,请留言。
如果没有留下您的联系方式,客服将无法和您联系!
留下以下信息,方便与您及时联系
Sitemap